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Abstract. A geometric formulation of analytical mechanics of systems with holonomic and  
holonomic one-sided constraints is proposed. This is an extension of work by Tulczyjew 
in which non-holonomic constraints were also considered, but not the one-sided case. The  
introduction of Lagrange multipliers to  give explicit equations of motion was not considered 
by Tulczyjew either. This allows us to study problems of motion of particles hitting moving 
walls. We verify that the conditions of collision are satisfied. 

1. Geometric structures 

Let M be a differentiable manifold. We introduce an  equivalence relation in the set 
C " ( M ,  R) of differentiable curves in M. Two curves y:R+ M and y ' : R +  M are 
equivalent i f f  0 y ' ( 0 )  =f 0 y ( 0 )  and D(f 0 y ' ) ( O )  = D(f 0 y) (O)  for each differentiable 
function f on M. The set of equivalence classes of curves is denoted TM and is called 
the tangent bundle of M. The bundle projection T ~ ,  : TM + M is defined by T M ( t O y )  = 
y(O), where t o y  denotes the equivalence class of y at y ( 0 ) .  If this is done for any 
value of the parameter and  not just at zero, we see that the curve y lifts to its curve 
of tangent vectors t y  : R -+ TM, so that in particular toy  = t y ( 0 ) .  The cotangent bundle 
T * M  of a manifold M is a vector bundle dual to the tangent bundle TM. Its bundle 
projection is denoted by rv : T*M --f M. 

If functions ( 9 " )  ( x  = 1 , 2 , .  . . , n )  form a coordinate system in a neighbourhood 
U c M, we denote by ( q x ,  g A  ), ( x ,  h = 1: 2, . . . , n )  the corresponding coordinate system 
in TU = T;( U ) ,  and by ( q x ,  p A ) ,  ( x ,  h = 1 , 2 , .  . . , n )  the corresponding coordinates in 
T*U = rG( U ) .  The coordinates pA are denoted by fA if the elements of T * M  are 
generalised forces, or by ApA if they are, rather, impulse jumps at collisions. If C is 
a submanifold of M, we consider its tangent bundle T C c  TM. For each point of 
C C  M there exists a neighbourhood U such that the intersection of C with U is 
described by equations C A ( q " ( q ) )  =0,  where CA,  ( A  = 1,. . . , m )  are functions on R". 
In section 3 we will deal with more general subsets C of M which are submanifolds 
with one or several boundaries. They are locally described by some equations 
CA(q" (q ) )=O ( A =  1 , .  . . , m )  as well as some inequalities C B ( q " ( q ) ) a O  ( B =  
1 , .  . . , s), where C A  and C B  are functions on R". If we take local coordinates ( q x ,  
q A )  ( x ,  A = 1,. . . , n )  in TM, the tangent bundle TC c TM is defined locally by condi- 
tions CA(q"(q))=O,  ( d C A / d q " ) q "  = O  ( A =  1,. . . , m )  and either C B ( q x ( q ) ) > O  or 
C B ( q " ( q ) ) = O  and ( d C B / d q " ) q " 3 0  fo reach  B = l ,  . . . ,  s. 
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For each differentiable mapping a : M + M’ one has a differentiable mapping 
Ta : TM + T M ’ ,  its tangent mapping. For each differentiable function g : M + R we 
define a function dTg:  TM + R by d T g ( t o y )  = D ( g o y ) ( O ) .  

Consider coordinates ( 9 ” )  (x = 1 , 2 , .  . . , n )  in a neighbourhood U of M and 
coordinates (q”,  4 ‘ )  (x, A = 1 , 2 , .  . . , n )  in TU = T;( U ) ,  which in turn induce coordin- 
ates ( q z ,  q’, Sq”, S q ” )  (x, A, p, v = 1,2,. . . , n )  in TTU = T ; , ~ ( T ; (  U 1). If x :R’+ M is 
a differentiable mapping, we denote by x, : R + M the curve obtained by fixing s E R. 
Then foxB is a curve in TM defined by t o x ( s )  = tax,. Hence, rotox is an  element of 
7 T M  and all its elements can be represented this way. Then in terms of this representa- 
tion we define a mapping xM : TTM + TTM by xhf ( to tox)  = t o t o i  where 2 : R 2 +  M is 
defined by i( s, t )  = x( t, s). The mapping xh,, is called the natural inuohtion in TTM 
and relations x,,,, 0 x,,,, = 1 TTM, rTM 0 xM = T T , ~  and Tr,,,, ox,,,, = T ~ , ~ ,  are easily verified. 
The local characterisation of xh., is provided by relations q ” ~ x , ~  = qy, 4 A o ~ , v f  = 6qA,  

Let TM x M  T*M denote the fibre product of the fibrations T,,,, : TM + M and 
rm : T * M  + M. Elements of TM X h f  T*M are pairs (U, p )  E TM x T * M  such that 
T ~ ( u )  = r , , , , (p) .  Since TM and T*M are dual bundles over M, this induces the 
canonical pairing as a function ( , ) : TM x T* M + R, by evaluation (U, p )  E R. Related 
to this we have the canonicaf symplectic 2-form U,,,, on the manifold T*M. 

A curve l : R +  TMx,, , ,T*M is a pair of curves ( :R+  TM and v : R +  T*M such 
that r M * t =  r M - v .  The tangent vector to{ can be identified with the pair ( U ;  U )  of 
vectors w = r o t €  TTM and U = tov E TT*M satisfying T r M ( w )  = T r M (  U ) .  It follows 
that the tangent bundle T ( T M  x,,,,T*M) can be identified with the fibre product 
TTM X T M  TT*M of fibrations TT,,,, : TTM + TM and T T , ~ ,  : TT*M + TM. Then the 
mapping dT(  , ) : T (  TM x h, T* M )  + R becomes a function on TTM x T M  TT* M. Taking 
coordinates ( q z )  (x = 1,2,  . . . , n )  in an open neighbourhood U of M induces coordin- 
ates ( q x ,  Sq’, q”, 8 4 ” )  (x, A, p, v = 1 , 2 , .  . . , n )  in TTU and coordinates (q”,  pp, 4”, bm) 
(x, p, p, U = 1,2,  . . . , n )  in TT* U. The fibre product TTU x TL, TT* U is the set of pairs 
( w , u )  in T T U x T T * U  satisfying q ” ( w ) = q ” ( u )  and q ” ( w ) = q ” ( u ) ,  while d T ( , )  is 
described locally by d T ( w ,  u ) = ~ x ( u ) 6 q X ( w ) + p , ( u ) 6 q X ( w ) .  

The reader is referred to Tulczyjew (1986) for further details on the geometrical 
constructions. 

SqPox , , , ,  = q”, 8 q y o x , , , ,  = S q “ .  

2. Dynamics with holonomic constraints 

Let M be the conjiguration manifold of a mechanical system with holonomic constraints 
and  external forces. The motion is a curve in T* M x T* M,  i.e. a pair (77, cp) of curves 
in T * M  such that r b f o v  = 7 r M o c p .  Here T * M  x , ~  T * M  is interpreted as the fibre 
product over M of the momentum bundle with the force bundle. The equation of motion 
is the condition that the image of the curve (tv,  cp) is contained in a submanifold B 
of the fibre product of the fibrations rM 0 rT- +, : TT* M + M and rM : T* M + M. The 
submanifold 0 is usually defined by a variational principle of the form 

D = { ( w , f ) ~  T T * M x n T * M ;  T T ~ ( w ) E  TC, d T ( x , ( ~ ) ,  w ) - ( T r M ( ~ ) , f )  

= (U, d L )  if T T ~  ( U )  E TC, r T M  ( U )  = T r w  ( w ) }  

where L :  T M  + R is the Lagrangian and C is a submanifold of M. For a system without 
constraints, C = M. 
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We consider first the time-independent case where M contains only position 
coordinates. A local coordinate system ( q x  ) ( x  = 1 ,  . . . , n )  in M induces local coordin- 
ates (qy , fA)  ( x ,  A = 1 , .  . . , n )  in the force bundle T * M .  In n * M  and 7 T M  we have 
induced coordinates (q", p A ,  4*,  @,,I and (qx ,  q",  Sq*,  SLj"), ( x ,  A ,  p, v = 1 , .  . . , n ) .  The 
submanifold C of M is described locally by C " ( q x )  = 0, ( A  = 1 , .  . . , m ) .  The local 
form of the variational principle defining fi is 

for all Sq", S4* such that ( a C A / a q x ) s q "  =0,  ( A  = 1 , .  . . , m ) ,  where q x  = q x ( f )  = 

q"(u)  = q"(w),  4" = 4 % ( u )  = 4 " ( w ) , , f ,  = f x ( f ) , p x  = p , ( w J ) , @ ,  = P x ( w ) ,  6q" = S q " ( u )  and 
Sq" = S 4 " (  U). 

If it were not for the forcesf,, we could apply here the standard Lagrange multiplier 
procedure in the calculus of variations. The more general statement we need here 
depends only on linear algebra arguments at the derivatives level. Assume that the 
m x n matrix ( C t )  has maximal rank m. Let CA = ( C f ,  . . . , C f )  E R" for any index 
A = 1 , 2 , .  . . , m be the row vectors of the matrix and  let U = ( a , ,  . . . , a,) ER". 

Proposition 1. If aJq" = 0 for any Sq" satisfying C t S q "  = 0, then there exist Lagrange 
multipliers A A  E R  such that 

a,Sq" = A,C;Sq" 

for any Sq", and conversely. 

Proof: Denote by s p { a }  and sp {C' ,  . . . , C m }  the vector subspaces spanned by the 
given vectors. By hypothesis, the corresponding orthogonal complements satisfy 
s p { C ' ,  . . . , Cm},c  sp{a} ' .  Hence U E  s p { C ' ,  . . . , C m } ,  as required. The converse is 
trivial. 0 

Equations ( 1 )  may be rewritten as follows i f  we introduce Lagrange multipliers A A  
( A  = 1 , .  . . , m )  to take into account the condition (dC"/dq") Sq" = 0.  Using the above 
proposition with C: = aCA/aq" ,  we get 

for any Sq",  S q x .  From here, we immediately get the following differential equations 
for the dynamics: 

Let us now consider the homogeneous time-dependent case. We take position and  
time coordinates ( qx,  t ) ,  ( x  = 1 ,  . . . , n )  in M ,  which induce local coordinates ( qx, t, g,, j )  
( x ,  A = 1,. . . , n )  in the force bundle T*M.  They also induce canonical coordinates 
(qx, t, p h ,  U, q'@, t ' ,  p : ,  U') ( x ,  A, p, v = 1 , .  . . , n )  in 7 T * M  where the prime denotes 
derivatives with respect to a new parameter, as well as coordinates 
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( q x ,  t ,  q'*, t ' ,  Sq", 6t,  Sq ' " ,  a t ' )  (x, A, k, v = 1, . . . , n )  in TTM.  The submanifold C of M 
is described by CA(q", t )  = 0 ( A  = 1, . . . , m )  and it represents a time-dependent 
holonomic constraint. The local form of the variational principle defining b is now 
written as 

( 3 )  

for all Sq" ,  St, Sq ' * ,  6t 'such that ( d C " / d q " ) S q "  + ( d C A / d t ) S t  = 0 ( A  = 1,. . . , m ) ,  where 
besides the corresponding conditions on the coordinates as in the other case, we have 

t'( w ) ,  St  = S t (  u )  and Sq'" = Sq '" (  u ) .  Also, L( q",  t ,  q'", t ' )  is homogeneous in the 
velocities. 

We change to more convenient non-canonical coordinates ( q", t ,  p h ,  e, Q",  t ' ,  p,, e )  
on TT*M with time derivatives, except that derivative of time with respect to the new 
parameter does still appear. It is defined by the equations e = -U, r ' q "  = q' /J ,  r'p,, = p :  
and t ' e  = -U' where, of course, t ' #  0. Since a change of coordinates from 
(q",  I ,  q", 1 ' )  to (q" ,  t, q A ,  t ' ) ,  ( x ,  A = 1,. . . , n) in T M  induces one in T T M  by taking 
derivatives, this means that we can write Sq'" = t 'Sq" + cj"St'. By also renaming the 
coordinates g, = t ' fx,  j = -t 'h in the force bundle T * M ,  we see that ( 3 )  may be 
rewritten by introducing Lagrange multipliers from proposition 1 again, getting 

t ' [ (  p, -f,)Sq" - ( e  - h ) S t  + p , S q " ]  + ( p , q "  - e)&'  

( p : - g , ) S q " + ( u ' - j ) S t + p , S q ' " + u S r ' =  SL(q",  t, q", t ' )  

t = t ( f ) = t ( u ) =  t ( w ) , q f X  = q ' " ( u ) = q ' " ( w ) , q , = g , ( f ) , J = j ( f ) , p : = p : ( w ) ,  t ' = r ' ( u ) =  

= t ' - S q " + t ' - S q " + t r ' - S t + L S r ' + r ' A ,  aL aL aL 
aqx aq" d t  

for any Sq", Sq'*, St, S t ' .  Here L(q", t, q A )  = L(q" ,  t ,  q* ,  1) is the non-homogeneous 
Lagrangian, i.e. L( q", t, q", t ' )  = t 'L(q",  t ,  q'* ). As before, we directly obtain the 
differential equations for the dynamics as 

the variable e is the energy of the system, while h is interpreted as the power of the 
external forces fx. 

3. Dynamics with one-sided constraints 

In this section M will be the configuration manifold of a mechanical system with 
holonomic constraints, one-sided conditions and  external forces. This includes the 
dynamics of particles bouncing elastically against walls (which may eventually be in 
motion as well), or even with motion constrained to a submanifold and  bouncing 
against a (moving) wall on it. The constraint subsets C in M will be manifolds with 
one or several boundaries, as described in the introduction. 
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We will restrict ourselves to the homogeneous time-dependent case. Conservation 
of energy is not obtained in the time-independent case. 

The motion is a curve in T*M x T* M, i.e. a pair (7, cp) of curves in T * M  such 
that rMoq = r M o c p  = y. The projection curve y is continuous and differentiable from 
above. The curves 7 and cp are not in general continuous, but possess lateral limits 
and are differentiable from above. The jumping curve A T  of 7 is defined as the 
difference between its lateral limits. The equation of motion is the condition that the 
image of the curve (q, 117, cp) is contained in a subset b of the fibre product 
TT* M x T* M. This subset is usually defined by a variational principle of 
the form 

d = { (  w, r , f )  E TT*M x \, T * M  x 

T* M x 

T * M ;  T r z f [  w )  E TC, dT(xM( u ) ,  w) - (  T ~ ~ ( u ) , f )  

3 ( U, d L )  and ( T T ~ ,  ( u ) ,  r )  5 0 if T T ~ ,  ( v) E TC, T~~ ( U )  = T n M  [ w )} 

where L :  T M  + R is the homogeneous Lagrangian and C is the smooth constraint 
subset of M ,  with tangent bundle TC. 

We take coordinates here which are an extension of those considered in the 
homogeneous holonomic case. We consider position and time coordinates ( q", t ) ,  
(x = 1,. . . , n)  in M, inducing local coordinates (q" ,  t ,  ApA, Au)  in the jump bundle T * M  
and ( q y ,  t ,  g,, j) (x, A = 1, . . . , n )  in the force bundle T* M. It also induces canonical 
coordinates (q" ,  t, p A ,  U, q", t ' ,  p :  , U') in 7 T * M  as well as coordinates 
( q " ,  t, q", t ' ,  Sq+,  S t ,  S q " ,  S t ' ) ,  ( x ,  A, p, v = 1, . . . , n )  in TTM. The subset C of M is 
describedlocallybyCA(q", t ) = O ( A = l ,  . . . ,  m ) a n d  C B ( q X , t ) > O ( B = m + l  , . . . ,  s). 
The tangent bundle TC can be described correspondingly as we show below, according 
to the local coordinates in TM being induced by the projections TT,,, or Tnb,. The 
local form of the variational principle defining d is written as 

and either 

C"(q",  t )  > 0 

C 5 ( q " ,  t )  = 0 

or 

and 

ac" aCn 
-q'"+- ?'SO ( B  = m + l , ,  . . , s) 

a t  

( p : - g , ) 6 q " + ( u ' - j ) S t + p , S q ' " + u S t ' " > S L ( q " ,  t, q'", t ' )  ( 6 )  

and ApxSq" + A u S t  2 0  for all Sq" ,  St, Sq'" ,  S t '  such that ( 5 )  is satisfied with Sq" ,  St, 
replacing q'" and t. 

In order to get the equations of motion, we need the following generalisation of 
the Lagrange multipliers statement in proposition 1, which includes one-sided con- 
straints. 

We remark that in general the boundary defined by the one-sided constraints in 
( 5 )  has several components where some or all of the defining functions C B  ( B  = tn+ 
1,. . . , s)  annihilate. For each boundary component we may relabel the indices B so 
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that it can be defined by C A  = 0 and  C" = 0 for all A = 1 , .  . . , m and B = m + 1,. . . , r 
with m + 1 s r s s. A reasonable assumption on the constraints is that the matrix 

($1 
( A  = 1,. . . , r ) ,  ( x  = 1 , .  . . , n + 1)  where q'lT' = t ,  has maximal rank r on any such 
boundary component. The interior set is defined by the condition that all the constraint 
functions are positive. More generally, in the proposition to follow, we deal with an  
r x ( n  + 1) matrix ( C ; )  of rank r. 

Proposition 2. The following two conditions are equivalent. 

1, . . . ,  r s s ) .  
( a )  a.&" 3 0 for 6q" satisfying Ct6q" = 0 ( A  = 1 , 2 , .  . . , m ) ,  CfGq" 3 0 ,  ( B  = m + 
(b )  a, = h A C z  + ABC E for Some A A  € R, ( A  = 1 ,2 ,  . . . , m ) A B  3 0,  ( B = m +  1, . . . , r ) .  

Proof: Clearly ( b )  implies ( a ) .  We will now prove that ( a )  implies (b) .  Part of the 
proof will be a reduction to proposition 1. If we denote 6q = ( 6 q ' ,  . . . , S q " " )  E R"", 
each subset (6q  : Cf6qx 3 0} as well as { 6q : a,Sq" 3 0) is a closed half-space in R"". 

We remark that any non-trivial vector subspace contained in a closed half-space 
has to be contained in its boundary hyperplane. Hence, if 6q satisfies the equalities 
Cf6q" = 0, Cf6q" = O  for any A = 1 , .  . . , m and B = m + 1 , .  . . , r then the equality 
a.&" = 0 holds. Hence, we can apply proposition 1 to conclude that for some 
coefficients A A € R  and A ~ E R  we have 

a ,  = A ~ C ~  + A ~ c , R .  
Now, 

U,6qX = A,C;Gq" + ABC:6q" = A B (  c E 6 q " )  

must be non-negative whenever C:'Sqx = 0, Cf Sq" 3 0. Since the vectors { C ' ,  . . . , C", 
C m + ' ,  . . . , C r }  are linearly independent in Rnt', we can choose 6q E Rnt '  orthogonal 

0 to all of them but one, say C R  for m + 1 B r. Hence A B  3 0. 

In order to apply this result to the two variational inequalities (6) with constraints 
( 5 ) ,  we use Lagrange multipliers A A ,  A B  and pA,  p B .  With the more convenient 
non-canonical coordinates ( q " ,  t ,  p A ,  e, 4'*, t ' ,  @&,, e )  on 7 T * M ,  where e = - U ,  t'q" = 4'" 
t '& = p ;  and t 'e  = - U '  for a non-homogeneous Lagrangian J?( q x ,  t, q * )  such that L = t 'L  
as in section 2, we see that (6) is rewritten as 

[ ' [ ( F i x  - f , )Sq"  - ( e  - h ) S t + p , 6 q X ] +  ( p , q "  - e ) & '  

69" + - 6t  
at  

aL aL aL 
as aq" a t  

= t' y 6q" + t' - Sq" + t' - 6t + LSt '+  t ' A A  

and 

ApJq" - Ae6t = pA Sq"+--6t ) + p B  ( ~ ~ , ' S q % + ~ 6 r )  - 
a t  a t  
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f o r s o m e P A E I W , C L B ~ O , ( A = l  , . . . ,  m ) , ( B = m + l ,  . . . ,  ~ ) f o r a n y S q " , S q ' ~ , S t , S t ' .  
Then we get the following equations for the dynamics and  the jumps: 

pxg" - e = i a i  
P x  =- ad" 

acA acB 
A e =  -pA--pB-.  

acA acB 
39" 39" a t  a t  

AP,  =PA-fPB- 

Notice that the fourth equation gives exactly the transformation from the energy 
function to the Lagrangian. 

In order to check that the momenta and the energy actually have discontinuity 
jumps only at the boundary defined by the one-sided conditions, we will prove the 
following two propositions and their corollary. These finer results depend not only 
on  linear algebra considerations, but also on the metric defined by the kinetic energy 
of our mechanical system. 

Proposition 3 (holonomic constraints). If Ap, ( x  = 1,2, . . . , n )  and Ae are the momenta 
and  energy jumps at some point and  Ap,Sq"-AeSt=O for S q " ,  S t  satisfying 
(aCA/dq" )Sqx+  (dCA/at)Gt = 0 ( A  = 1 , .  . . , m ) ,  then Apx  = 0 for any x ,  and h e  = 0. 

Proof: From proposition 1 we know that 

( x  = 1,2,. . . , n ) .  
aCA 

Ae = -pA - 
a t  

acA 
APX = P A  - 

a9" 
( 9 )  

The momenta are related to the velocities by means of the equation 

p x  = g x A q A  (10) 
where ( g x A )  is the matrix of the Riemannian metric associated with the kinetic energy. 
Since the velocities must be tangent to the constraint submanifold, they satisfy the 
conditions 

ac4 acA 4" - +-=O 
aq" a t  

for any index A. 

From ( lo) ,  we obtain the relationship between the jumps as 

= g x A A q A .  

Using the fact that the Riemmanian matrix is symmetrical and  combining with (9 ) ,  
we get 

or  equivalently 
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where ( g A x ) = ( g n A ) - ' .  On the other hand, the velocity jumps A q x  must satisfy the 
linear part of equation (11): 

for any D = 1 , .  . . , m. Combining with (12), we get 

The expression which multiplies the pa can be interpreted as a Grammian matrix 
defined by the inner products of the rows of the Jacobian matrix (aC"/aq"). Since 
the Jacobian matrix is non-singular, the Grammian is also non-singular, so that 
pa = 0 for any A = 1 , .  . . , m. Hence, ( 9 )  implies that Apx = 0 ( x  = 1 , 2 , .  , , , n )  and 
b e  = 0. 0 

Equation (13) can be written as 

- 0  ApAgA" - - acD 
as" (14) 

which we will consider in the proof of proposition 4. 

Proposition 4 (holonomic and one-sided constraints). 

B = m + l ,  . . . ,  r with m + l S r < s , i f w e  haveAp,6qx-AeSts0,then 
(a)  On the boundary component defined by C A  = 0 for A = 1, .  . . , m and C B  = 0, 

acA acH 
h e =  -pA--pB- 

aCA acB 
Jq as" a t  a t  APx=PCLa-Y-+pB-  

for x = 1 , .  , . , n, with pA E E2 and p B  5 0. 

we get Ap, = 0 and h e  = 0. 
(b) Outside any one-sided boundary, the terms containing the C B  disappear and 

Proof: As in proposition 3, we have p x  = gnAqA. 
(a) The constraints on the velocities are written as 

aCA aCA 4" - +-=O 
as" a t  

when CB=O 
Cj"a9.+ats0 ac" aCB 

for A = 1, .  , . , m, B = m + 1,. . . , r. From proposition 2 we can write 

(15)  

where pA E R and pB 2 0, ( A  = 1, . . . , m ) ,  ( E  = m + 1, . . . , r ) ,  and we will give a pro- 
cedure to determine the pA.  

Multiplying (16) by 6q", we get 
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We can not assert in general that all the pA = 0, but since the velocity jumps Aq" 
will have to satisfy only the equality constraints, equations (14) are still valid: 

Replacing 6q" by g " " ( d C D / d q " )  in (17), we get 

As remarked in proposition 3, the matrix multiplying the pa in the first term is 

U 
non-singular. So, we can solve for the pa in terms of the pB.  

Part (b )  is a direct consequence of proposition 3 .  

From propositions 2 and 4 we conclude the following about equations (8). 

Corollary. We have for any given index B = m + 1, . . . , s that A B  z= 0 and  p B  3 0 on 
the subset of the boundary { CB = 0) and they are zero elsewhere, while A A ,  pA E R and 
the pA ( A  = 1,. . . , m )  vanish outside any boundary. In particular, off boundaries we 
have Apx = 0 for x = 1 , 2 , .  . . , n and Ae = 0. 

4. Examples 

In this section we will illustrate our formulation in a few examples. We will also verify 
that the jump  conditions for a particle hitting a wall agree with those of an elastic bounce. 

We begin with the simple example of a constrained particle moving in the plane, 
in order to verify how the jumping parameters and multipliers must be zero. 

Example 1 .  Motion in the plane constrained to the x axis. The Lagrangian is L =  
$ m ( x 2 + y 2 ) ,  subject to the holonomic constraint C: y = 0. Hence the corresponding 
infinitesimal conditions are j = 0 and 6y  = 0. We consider the variational equations 
in the form (7) as if there were any jumps, writing directly the equations corresponding 
to equations (8): 

PI =fx p\- = mi e - h = O  AP, = 0 Ae=O 

Here A and  + are Lagrange multipliers. Since j = O ,  we have A j = O ,  so that Ap,, = 
mAp = 0 and  there is no jump  in the p l ,  i.e. p = 0. Also, pI. = my = 0, and  hence the 
y component of the force acting on the particle is Ij,,,=O: The multiplier A is the 
constraint force (principle of d'Alembert) needed to maintain the particle on the x 
axis, which is just A = -fit 

Finally, h = e = ( 1 / m ) p T &  = xfx is indeed the power of the external force. 

Example 2. Consider now the general case of collision of a free particle of mass m 
against a moving wall in R". If we write q = ( q , ,  . . . , q,,), p = ( p , ,  . . . , p , , ) ~  R", etc., 
we have a constraint of the form C(q, t )  2 0. The variational equation for the jumping 
now becomes 
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for a multiplier A 3 0. Hence, if we denote by grad C the gradient of C with respect 
to the position variables, we get the following vector and scalar equations: 

(18) p ’ - p  = A grad C ( q ,  t )  

Notice that no motion of the wall implies energy conservation. 
At any fixed ( q ,  t )  we may express the momentum as p = p *  + p ’  in terms of its 

components normal and parallel to the wall, and  similarly for p ’ .  Hence p ’ - p =  
( p” - p ‘ )  + (p ’ l  - pll) ,  and from ( 18) we have, of course, 

p ‘  -PI’ = 0 p l L  -pL = A  grad C. 

On the other hand, 

so that 

If C ( q ,  t )  > 0 then A = 0 and  (19) agrees with (18’). At a collision we have C (  q, t )  = 0 
with A > 0. If V E  R“ denotes the velocity of a point remaining always in the wall, by 
differentiation we get 

ac 
V.grad  C+-=O 

at  

o r  equivalently 

aC 
a t  

V’*gradC+-=O.  

In fact, only VI is uniquely defined, unless information is known about motion of 
individual particles of the wall. Combining with (18’) and  (19), we conclude as required 
that 

We will now verify that this agrees with the computation of velocities just before 
and  after an  elastic bouncing in one dimension. Let V and V’ E R be the velocity of 
the wall just before and  after the collision, while U and U ’ E  R are the velocities of the 
particle just before and  after. Then momentum conservation gives 

m 
V ’ -  v = - ( U - U ’ )  

M 

while the quotient of kinetic energy conservation divided by momentum conservation 
in the above form gives 

V ’ + V = u + u ’  
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where M is the mass of the wall. Since we assume M +=m for the mass of the wall, 
we get V ’ =  V. So v + v ’ = 2 V  or 

in terms of momenta, which is a particular case of ( 2 1 ) .  

Example 3. Consider the motion of a particle constrained to an arc of circle in the 
plane. We consider more precisely the arc of the unit circle contained in the first 
quadrant. 

The Lagrangian is t = i m ( x - ” + j ’ )  and the constraints are 

C‘:  

C 2 :  x s o  so x 3 0  if x = 0 

c3 : y a o  so v 2 0  if y = 0. 

x ’ + y ’ =  1 so xx + y j  = 0 and xSx + y a y  = 0 

In this case the equations (8) become 

P,=Aix+Az e - h = O  p.; = m i  

A P I = p I X + p 2  A e = O  PI = A , y + A ,  

I , ,  
e = - ( p ; + p ; )  Pi = m y  APi = P ‘ Y + P 3  2 m  

where A p,  E R and the Lagrange multipliers A ? ,  A 3 ,  p2,  p3 of the one-sided conditions 
are non-negative. Since ( py, PI ) is the total force acting on the particle, we recognise 
A , ( x ,  y )  as the d’Alembert force needed to maintain the particle on the arc. Then 
( A 2 ,  A ? )  gives the force at  the endpoints of the arc making the particle bounce back, 
and  hence it is zero in its interior. At x = 0 we have A 2  > 0 and  A 3  = 0, while at J’ = 0 
we have A I  = 0 and  A 3  > 0. Also, p1 = 0 outside the boundary and in fact p ,  = 0. Finally, 
p2 and p3 satisfy the same conditions as A:, A i ,  i.e. p2 > 0 at x = 0 and  p3 > 0 at J = 0, 
and  they are zero elsewhere. 

From Ae=(1/2m)( lp’12- /p12)=0,  we conclude that A p = ( 0 , 2 p : )  or  p 3 = 2 p :  at 
y = 0, while Ap = ( 2 p : ,  0) or p2 = 2p:  at .y = 0. 

We have a periodic motion where the particle bounces back and  forth between the 
two extreme points of the arc, with a constant angular velocity 1 or  - 1. 

Example 4. Consider now motion of a free particle on a circular and  an elliptic billiard. 
We begin with the circular billiard, where the constraint is given by 

C :  x ’ + y 2 <  1 so xx + y y  s 0 if x 2  + y ’ = I .  

The Lagrangian is again L = i m ( x 2 + j 2 )  and equations ( 8 )  are now 

p, = Ax P - h = O  p y  = mx AP,  = p x  A e = O  

I .  
e = - ( p ; + p f )  PI = mY AP, = CLY 2 m  P, = A y  

where now A s 0 and p s 0 are the Lagrange multipliers, which are in fact null, unless 
we have a collision with the wall. In  this case A ( x ,  y )  is the wall force acting on the 
particle at  the instant of collision. We notice that Ap = p ( x ,  y )  is the change in the 
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momentum at the instant of collision, normal to the wall. The power of the wall force 
is given by 

1 
2 m  

h = = - ( pypy + pip, ) = A ( XX + yJj ) 2 0 

and  is zero unless a collision with the wall is performed. 
It is clear that if 0 is the angle on the circle between two consecutive collisions of 

the particle, this angle will be repeated by symmetry as in figure 1. So, the set of 
consecutive collisions will be finite or  dense in S '  = { x z + y 2  = l}, according to whether 
/3/r is rational or irrational. In  the first case we have a periodic orbit, while in the 
second case the orbit is dense on an annulus. 

Figure 1 

In fact, this can be considered as a completely integrable geodesic flow, since any 
elliptic billiard is the limit of the geodesic flow of oblate ellipsoids (completely 
integrable systems themselves) where two semi-axes are fixed while the third one tends 
to zero. 

In particular, the circular billiard is the limit of geodesics in ellipsoids of revolution, 
so that the above annulus is the projection of a torus. All the invariant tori in phase 
space project this way of course, because of the angular momentum integral for surfaces 
of revolution. 

For the elliptic billiard the constraint is 

c: x"Sa'y's 1 for some constant a > 1 
so xx + a'yy s 0 if x'+ a'y' = 1. The Lagrangian is the same as above, and  equations 
( 2 2 )  are almost the same, except for the equations for p, and Ap,, which become 

p, = a'Ay Ap, = a 'py  

for A, p s 0 .  The power of the wall force is now given by 

h = e = A ( xx + a ' y j )  2 0. 

We can see that the simplest periodic orbits are those corresponding to reflections 
along the principal axes. A less trivial periodic orbit when a >a, can be constructed 
by starting with vertical trajectories x2 = x for 0 < x < 1, and  adjusting x .  So we get 
an orbit symmetric with respect to the x and J: axes as in figure 2 .  

A non-periodic orbit which for t + *cc tends to the periodic orbit along the x axis 
can be constructed by using the property of the ellipse that reflection of an  orbit from 
a focus always passes through the other focus. This orbit is symmetrical with respect 
to the x axis, and  it is shown in figure 3 .  
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Figure 2 

Figure 3 

The elliptic billiard can also be considered as a completely integrable geodesic 
flow, and the projection of tori in phase space always omits some open subset which 
contains the foci in the elliptical region. Hence, there are no orbits dense everywhere 
(Arnol’d 1983). However, by considering different convex regions, we can in fact get 
billiards with ergodic flows (Benettin and Strelcyn 1978). 
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